First highly stereoselective synthesis of (+)-dihydrosesamin, a trisubstituted tetrahydrofuran-type of lignan, by using highly erythro-selective aldol condensation

Satoshi Yamauchi,* Teruhisa Tanaka and Yoshiro Kinoshita
College of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8566, Japan

Received (in Cambridge, UK) 20th June 2001, Accepted 6th August 2001
First published as an Advance Article on the web 4th September 2001

A 2,3,4-tri-substituted tetrahydrofuran-type lignan, (+)-dihydrosesamin 2, was stereoselectively synthesized by using erythro-selective aldol condensation of the potassium enolate from ($3 R$)-3-(3,4-methylenedioxyphenyl)-4-butanolide 3 with piperonal as a key reaction. This is the first stereoselective synthesis of (+)-dihydrosesamin, which is the enantiomer of the natural product.

Introduction

A 2,3,4-trisubstituted tetrahydrofuran lignan, (-)-dihydrosesamin $1,{ }^{1}$ has been isolated from Daphne tangutica which had been used as an abortifacient and a medicine for rheumatism and toothache. Though the biological activity of (-)-dihydrosesamin $\mathbf{1}$ is unknown, tetrahydrofuran lignans are known to be antioxidants, PAF inhibitors and stress compounds in plants. ${ }^{2}$ Synthetic research into $\mathbf{1}$ and its stereoisomers is very important in the study of structure-activity relationships of tetrahydrofuran lignans. The stereoselective introduction of three substituents onto a tetrahydrofuran ring is also an interesting topic. Some racemic syntheses of dihydrosesamin have been reported; ${ }^{3}$ however, there is no report on the synthesis of the optically active compound. This paper is the first report of a stereoselective synthesis of (+)-dihydrosesamin 2 which is the enantiomer of the natural product (Fig. 1).
In this research, the erythro-selective aldol condensation using the potassium enolate of γ-butyrolactone ${ }^{4}$ was employed as a key reaction to obtain the stereochemistry at the 2- and 3 -position of (+)-dihydrosesamin. It has been previously reported that aldol condensation of the potassium enolate of (3R)-3-(3,4-methylenedioxybenzyl)-4-butanolide ${ }^{5} 3$ with some tri/dimethoxybenzaldehydes preferentially gave the erythro aldol product (Scheme 1).

Scheme 1 erythro-Selective aldol condensation.
If the aldol condensation of the butanolide $\mathbf{3}^{5}$ with piperonal gave the erythro aldol product $\mathbf{4}\left(2 S, 2^{\prime} S\right)$ in high selectivity, this aldol product would be transformed into diol 5 which could be converted into the tetrahydrofuran-ring system 6 by $S_{\mathrm{N}} 2$ cyclization with retention of the stereochemistry at the benzylic position. In this plan, the steric configuration at the 2 - and 3position of the tetrahydrofuran ring in $\mathbf{6}$ would depend on the stereochemistry at the 2 - and 2^{\prime}-position of aldol product 4, respectively, and the steric configuration of the 3-position of the butanolide 3, whose preparation from L-glutamic acid has

(-)-dihydrosesamin (1)
(+)-dihydrosesamin (2)

Fig. 1
been reported, ${ }^{5}$ would be that of the 4 -position of the tetrahydrofuran ring in 6 (Scheme 2).

Results and discussion

Aldol condensation of the butanolide 3^{5} with piperonal using potassium bis(trimethylsilyl)amide as a base gave erythro aldol product $4\left(2 S, 2^{\prime} S\right)$ as a single isomer in 78% yield. Butanolide 3 was recovered to the extent of 14%. The coupling constant of $2-\mathrm{H}$ with the proton of the benzyl substituent at $\mathrm{C}-2^{\prime}$ (2.9 Hz) revealed the product to be the erythro isomer $\left(2 S, 2^{\prime} S\right){ }^{6}{ }^{6}$ This coupling constant was due to the axial-equatorial relationship of $2-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$ in the six-membered ring formed by a hydrogen bond between the hydroxy group and the carbonyl group. In the case of the threo isomer, this coupling constant would be $6-9 \mathrm{~Hz}$ because of the resulting diaxial relationship.
After protection of the hydroxy group as a triethylsilyl (TES) group using triethylsilyl trifluoromethanesulfonate (TESOTf) ${ }^{7}$ and 2,6 -dimethylpyridine (2,6 -lutidine) (84%), the lactone 7 was reduced to diol $\mathbf{8}$ by lithium aluminium hydride in 100% yield. An $S_{\mathrm{N}} 2$ cyclization was then adopted to produce the tetrahydrofuran ring. Thus diol $\mathbf{8}$ was converted into dimesyl derivative 9 by employing methanesulfonyl chloride and triethylamine, in 93% yield. This resulting unstable dimesyl diester was exposed to desilylation using tetra- n-butylammonium fluoride. ${ }^{8}$ In this stage, intramolecular $S_{\mathrm{N}} 2$ cyclization occurred to give the (methylsulfonyloxymethyl)tetrahydrofuran 10 in 90% yield. This unstable monomesyl ester was treated with aq. sodium hydroxide in DMF to give (+)-dihydrosesamin $2\left\{[a]_{\mathrm{D}}^{20}+15.9\right.$, c 0.75 in pyridine; (-)-dihydrosesamin 1: $[a]_{\mathrm{D}}^{20}-15.9, c 0.67$ in pyridine $\left.{ }^{1}\right\}$. An NOE experiment showed the correlation of the methylene protons of the hydroxymethyl group ($3^{\prime}-\mathrm{H}_{2}$) with the benzylic protons on the 4 -position $\left(4^{\prime}-\mathrm{H}_{2}\right)$ and with

5

Scheme 2 Synthetic plan of (+)-dihydrosesamin.
2-H (Scheme 3). The NMR and IR data of the synthesized (+)-dihydrosesamin 2 agreed with those of natural (-)dihydrosesamin $1^{1,3}$
(+)-Dihydrosesamin 2 was therefore stereoselectively synthesized from the butanolide $\mathbf{3}$ in 6 steps in 37% overall yield. In this process, erythro-selective aldol condensation of butanolide 3 with piperonal was employed for stereoselective introduction of substituents.

Experimental

All melting-point (mp) data are uncorrected. NMR data were measured by a JNM-EX400 spectrometer. EIMS data were measured with an Hitachi $\mathrm{M}-80 \mathrm{~B}$ and optical rotations were evaluated with an Horiba SEPA-200, $[a]_{D}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. The silica gel used was Wakogel C-300 (Wako, 200-300 mesh), and preparative TLC was conducted with Merck silica gel $60 \mathrm{~F}_{254}(0.5 \mathrm{~mm}$ thickness, 20×20 cm). The numbering of compounds was changed to follow IUPAC nomenclature rules.

(2S,3R)-2-[(1S)-1-Hydroxy-1-(3,4-methylenedioxyphenyl)-methyl]-3-(3,4-methylenedioxybenzyl)-4-butanolide 4

To a solution of KHMDS $(0.5 \mathrm{M}$ in toluene; $21.8 \mathrm{ml}, 10.9$ mmol) in THF (80 ml) was added a solution of the butanolide $3(2.00 \mathrm{~g}, 9.08 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $-75^{\circ} \mathrm{C}$. After the solution had been stirred at $-75{ }^{\circ} \mathrm{C}$ for 30 min , a solution of piperonal $(1.57 \mathrm{~g}, 10.5 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ was added. The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 1 h before the addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,

2
Scheme 3 Synthesis of (+)-dihydrosesamin 2. Reagents and conditions (yields): (a) piperonal, KHMDS, THF, $-75^{\circ} \mathrm{C}, 1 \mathrm{~h}(78 \%)$; (b) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $1 \mathrm{~h}(84 \%)$; (c) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$, $1 \mathrm{~h}(100 \%)$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}(93 \%)$; (e) n-Bu ${ }_{4} \mathrm{NF}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ (90%); (f) 1 M aq. NaOH , DMF, $120^{\circ} \mathrm{C}$, 16 h (68%).
and evaporated. The residue was purified by silica gel column chromatography ($10 \% \mathrm{EtOAc}$-benzene) to give erythro-aldol product $4(2.62 \mathrm{~g}, 78 \%)$ as a colorless oil, $[\alpha]_{\mathrm{D}}^{20}-44.6$ (c 0.92, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500,2899,1755,1611,1505,1445$, $1042 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.27\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,7.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.42$ $\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,8.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J 5.9,2.9 \mathrm{~Hz}$, $2-\mathrm{H}), 2.79(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.94(1 \mathrm{H}, \mathrm{dd}, J 8.8$, $5.9 \mathrm{~Hz}, 4-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{dd}, J 8.8,8.3 \mathrm{~Hz}, 4-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{br}$ s, by $\mathrm{D}_{2} \mathrm{O}$-exchange d, $\left.J 2.9 \mathrm{~Hz}, \mathrm{ArCHOH}\right), 5.89(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}$, ОС $H \mathrm{HO}), 5.92(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}$, ОСНHO), $5.95(1 \mathrm{H}, \mathrm{d}, J 1.5$ $\mathrm{Hz}, \mathrm{OCHHO}), 5.96(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{O}), 6.30-6.34$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.61(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.72(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 36.3,39.4,52.8,71.8,72.7,100.9,101.1,105.8$, $108.1,108.6,118.3,121.5,131.5,134.9,146.1,146.9,147.6$, $147.8,178.3 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}, 20 \mathrm{eV}) 370\left(\mathrm{M}^{+}, 11 \%\right), 220(23), 135$ (100) [Found (HRMS): $\mathrm{M}^{+}, 370.1048 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{7}$ requires M, 370.1051].
(2S,3R)-3-(3,4-Methylenedioxybenzyl)-2-[(S)-(3,4-methylene-dioxyphenyl)(triethylsilyloxy)methyl]-4-butanolide 7

To an ice-cooled solution of aldol product $4(2.30 \mathrm{~g}, 6.21$ mmol) and 2,6-lutidine ($1.81 \mathrm{ml}, 15.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(10 \mathrm{ml})$ was added TESOTf ($1.62 \mathrm{ml}, 7.16 \mathrm{mmol}$). The reaction solution was stirred at room temperature for 1 h before addition of saturated aq. NaHCO_{3}. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation, the residue was purified by silica gel column chromatography ($40 \% \mathrm{EtOAc}$-hexane) to give silyl ether 7 (2.53 g, 84%) as colorless crystals, mp $114-115{ }^{\circ} \mathrm{C}(30 \%$ EtOAchexane), $[a]_{D}^{20}-54.3\left(c 0.92, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2880$, $1763,1611,1505,1443,1042 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.56(6 \mathrm{H}, \mathrm{q}, J 7.8 \mathrm{~Hz}$, $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 2.23(1 \mathrm{H}, \mathrm{dd}$, $J 13.7,9.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), $2.41(1 \mathrm{H}, \mathrm{dd}, J 3.9,2.0 \mathrm{~Hz}, 2-\mathrm{H}), 2.49$ (1 H, dd, $J 13.7,7.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), $2.81(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.98(1 \mathrm{H}$, dd, $J 8.5,3.7 \mathrm{~Hz}, 4-\mathrm{H}), 4.39(1 \mathrm{H}$, dd, $J 8.5,7.8 \mathrm{~Hz}, 4-\mathrm{H})$, $5.27(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, \operatorname{ArCHOH}), 5.89(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}$, OCHHO), $5.91(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{O}), 5.95(1 \mathrm{H}, \mathrm{d}, J 1.5$ $\mathrm{Hz}, \mathrm{OCHHO}), 5.97(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{OCHHO}), 6.21(1 \mathrm{H}, \mathrm{d}$, $J 1.5 \mathrm{~Hz}, \mathrm{ArH}), 6.27(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.5 \mathrm{~Hz}, \mathrm{ArH}), 6.56(1 \mathrm{H}$, d, $J 7.8 \mathrm{~Hz}, \mathrm{ArH})$, 6.64-6.65 (3H, m, ArH); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 4.6$, $6.7,35.9,39.9,54.3,73.2,73.3,100.9,101.1,105.7,107.8$ 107.9, 108.6, 118.2, 121.7, 131.6, 135.9, 146.0, 146.7, 147.5, 178.1; m/z (EI, 20 eV) 484 (M+ M^{+}5\%), 455 (22), 265 (100), 135 (33) (Found: C, 64.31; H, 6.52. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}$ requires $\mathrm{C}, 64.44$; H, 6.66\%).

($2 R, 3 R$)-2-(3,4-Methylenedioxybenzyl)-3-[(S)-(3,4-methylene-dioxyphenyl)(triethylsilyloxy)methyl]butane-1,4-diol 8

To a suspension of $\mathrm{LiAlH}_{4}(0.13 \mathrm{~g}, 3.43 \mathrm{mmol})$ in THF (5 ml) was added a solution of lactone $7(1.10 \mathrm{~g}, 2.27 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After the reaction mixture had been stirred at room temperature for 1 h , saturated aq. MgSO_{4} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added. The mixture was stirred at room temperature for 30 min before filtration. The filtrate was concentrated. The residue was subjected to silica gel column chromatography (EtOAc-hexane $1: 2$) to give diol $8(1.11 \mathrm{~g}, 100 \%)$ as a colorless oil, $[a]_{D}^{20}-60.0\left(c 0.85, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3425,2880$, $1609,1505,1443,1042,939 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.52(6 \mathrm{H}, \mathrm{q}, J 7.8 \mathrm{~Hz}$, $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.79(1 \mathrm{H}, \mathrm{m})$, $2.29(1 \mathrm{H}, \mathrm{m}), 2.38\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,8.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.50-2.70$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.66\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,7.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.46(1 \mathrm{H}$, dd, $\left.J 11.0,7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, J 11.0,4.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J 11.1,2.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.77(1 \mathrm{H}$, dd, $\left.J 11.1,5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.80-4.00(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.92(1 \mathrm{H}$ d, J $6.3 \mathrm{~Hz}, \mathrm{ArCHOH}$), $5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.95(2 \mathrm{H}, \mathrm{d}$, $\left.J 3.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.46(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, ArH), $6.64(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.68-6.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;$ $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 4.7,6.7,36.8,39.4,50.0,59.5,61.5,73.7,100.7$, $100.9,106.9,107.6,107.9,109.2,119.7$, 121.8, 134.0, 137.2, 145.6, 146.5, 147.4, 147.5; m/z (EI, 20 eV) 488 (${ }^{+}, 0.2 \%$), 265 (100), 135 (62) (Found: C, 64.26; H, 6.54. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Si}$ requires C, $63.91 ; \mathrm{H}, 7.43 \%)$.

(2S,3R,4R)-3-Hydroxymethyl-4-(3,4-methylenedioxybenzyl)-2-(3,4-methylenedioxyphenyl)tetrahydrofuran [(+)-dihydrosesamin] 2

To an ice-cooled solution of diol $8(0.55 \mathrm{~g}, 1.13 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{ml}, 2.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added MsCl $(0.19 \mathrm{ml}, 2.45 \mathrm{mmol})$. After the reaction solution had been stirred at room temperature for 1 h , saturated aq. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The organic solution was separated washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and silica gel column chromatography (EtOAc-hexane 1:2) gave unstable dimesyl derivative 9 ($0.68 \mathrm{~g}, 93 \%$) as a colorless oil, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.53(6 \mathrm{H}, \mathrm{q}, J 7.8 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}), 2.08$ $(1 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{dd}, J 13.7,9.3 \mathrm{~Hz}), 2.79(1 \mathrm{H}$, dd, $J 13.7,6.1 \mathrm{~Hz}$), $3.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OMs}), 3.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMs}), 4.23$ $(2 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 9.3,6.3 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}$ $J 9.3,4.6 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, J 4.9 \mathrm{~Hz}), 5.92(2 \mathrm{H}, \mathrm{s}), 5.97(2 \mathrm{H}, \mathrm{d}$, $J 2.4 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J 8.3$
$\mathrm{Hz}), 6.61(1 \mathrm{H}, \mathrm{s}), 6.67(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 4.7,6.8,35.7,37.2,37.4,46.3,67.7,70.7,73.4,100.9$, 101.1, 106.4, 107.8, 108.0, 108.9, 119.4, 121.9, 132.2, 136.0, 146.0, 146.9, 147.6.

To an ice-cooled solution of this dimesyl compound (0.68 g , 1.05 mmol) in THF (10 ml) was added $n-\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF; $1.05 \mathrm{ml}, 1.05 \mathrm{mmol}$). After the reaction solution had been stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc were added. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and silica gel column chromatography (EtOAc-hexane $1: 2$) gave the unstable (methylsulfonyloxymethyl)tetrahydrofuran $10(0.41 \mathrm{~g}$, $90 \%)$ as a colorless oil, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.49-2.58(2 \mathrm{H}, \mathrm{m}), 2.74$ $(1 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{dd}, J 13.4,5.1 \mathrm{~Hz}), 3.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMs}), 3.71$ $(1 \mathrm{H}, \mathrm{dd}, J 8.8,7.1 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J 8.8,6.8 \mathrm{~Hz}), 4.29(1 \mathrm{H}$, dd, $J 10.0,8.6 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J 10.0,8.6 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}$, $J 5.9 \mathrm{~Hz}), 5.94(2 \mathrm{H}, \mathrm{s}), 5.95(2 \mathrm{H}, \mathrm{s}), 6.61-6.69(2 \mathrm{H}, \mathrm{m}), 6.73-$ $6.81(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 33.0,37.5,42.1,49.5,67.2,72.6,82.4$, $100.9,101.1,106.1,108.1,108.3,108.8,119.1,121.4,133.2$, 135.8, 147.2, 147.9.

A reaction solution of the (methylsulfonyloxymethyl)tetrahydrofuran $10(0.41 \mathrm{~g}, 0.98 \mathrm{mmol})$ in $\operatorname{DMF}(0.5 \mathrm{ml})$ and 1 M aq. $\mathrm{NaOH}(0.5 \mathrm{ml})$ was stirred at $120{ }^{\circ} \mathrm{C}$ for 16 h before additions of water and EtOAc. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was applied to silica gel TLC plates (benzeneEtOAc 5 : 1) to give (+)-dihydrosesamin $2(0.24 \mathrm{~g}, 68 \%)$ as colorless crystals, mp $97-98{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}+15.9(c 0.75$, pyridine); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3437,2888,1611,1505,1445,1042,938 ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.53(1 \mathrm{H}$, dd, $\left.J 13.4,10.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{dd}$, $\left.J 13.4,5.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.72(1 \mathrm{H}, \mathrm{dd}, J 8.3,6.4 \mathrm{~Hz}, 5-\mathrm{H}), 3.76$ ($1 \mathrm{H}, \mathrm{dd}, J 10.7,6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 3.89 (1 H , dd, $J 10.7,6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J 8.3,6.6 \mathrm{~Hz}, 5-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{d}, J 6.4$ $\mathrm{Hz}, 2-\mathrm{H}), 5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.64$ $(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.73(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, $\mathrm{ArH}), 6.76(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 33.2$ $\left(\mathrm{ArCH}_{2}\right), 42.3(4-\mathrm{C}), 52.6(3-\mathrm{C}), 60.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 72.9(5-\mathrm{C}), 82.9$ $(2-\mathrm{C}), 100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.0\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.3,108.0,108.3$, 108.9, 119.0, 121.4, 134.1, 137.0, 145.9, 146.9, 147.7, 147.8; m / z (EI, 20 eV) $356\left(\mathrm{M}^{+}, 65 \%\right), 135$ (100) [Found (HRMS): $\mathrm{M}^{+}, 356.1252 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\left.M, 356.1258\right]$.

Acknowledgements

We measured the 400 MHz NMR data at the Advanced Instrumentation Center for Chemical Analysis, Ehime University. We thank the staff of this center for EIMS measurements.

References

1 Z. Lin-gen, O. Seligmann, H. Lotter and H. Wagner, Phytochemistry, 1983, 22, 265.
2 D. C. Ayres and J. D. Loike, Lignans, Cambridge University Press, Cambridge, 1990.
3 D. R. Stevens and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1990, 425; D. R. Stevens and D. A. Whiting, J. Chem. Soc., Perkin Trans. I, 1992, 633; G. Maiti, S. Adhikari and S. C. Roy, J. Chem. Soc., Perkin Trans. 1, 1995, 927.
4 S. Yamauchi, M. Machi and Y. Kinoshita, Biosci. Biotechnol. Biochem., 1999, 63, 1453.
5 (a) M. Taniguchi, K. Koga and S. Yamada, Tetrahedron, 1974, 30, 3547; (b) U. Ravid, R. M. Silverstein and L. R. Smith, Tetrahedron, 1978, 34, 1449; (c) K. Tomioka, H. Mizuguchi and K. Koga, Chem. Pharm. Bull., 1982, 30, 4303
6 H. O. House, D. S. Crumrine, A. Y. Teranishi and H. D. Olmstead, J. Am. Chem. Soc., 1973, 95, 3310.

7 C. H. Heathcock, S. D. Young, J. P. Hagen, R. Pilli and U. Badertscher, J. Org. Chem., 1985, 50, 2095

8 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.

